3.7.36 \(\int \frac {1}{(d+e x)^2 (a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\) [636]

3.7.36.1 Optimal result
3.7.36.2 Mathematica [A] (verified)
3.7.36.3 Rubi [A] (verified)
3.7.36.4 Maple [C] (verified)
3.7.36.5 Fricas [B] (verification not implemented)
3.7.36.6 Sympy [F(-1)]
3.7.36.7 Maxima [F]
3.7.36.8 Giac [B] (verification not implemented)
3.7.36.9 Mupad [B] (verification not implemented)

3.7.36.1 Optimal result

Integrand size = 30, antiderivative size = 484 \[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=-\frac {3 \left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )}{8 a^3 \left (b^2-4 a c\right )^2 e (d+e x)}+\frac {b^2-2 a c+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) e (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {5 b^4-35 a b^2 c+36 a^2 c^2+b c \left (5 b^2-32 a c\right ) (d+e x)^2}{8 a^2 \left (b^2-4 a c\right )^2 e (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {3 \sqrt {c} \left (\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )+\frac {b \left (5 b^4-47 a b^2 c+124 a^2 c^2\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^3 \left (b^2-4 a c\right )^2 \sqrt {b-\sqrt {b^2-4 a c}} e}-\frac {3 \sqrt {c} \left (\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )-\frac {5 b^5-47 a b^3 c+124 a^2 b c^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^3 \left (b^2-4 a c\right )^2 \sqrt {b+\sqrt {b^2-4 a c}} e} \]

output
-3/8*(-12*a*c+5*b^2)*(-5*a*c+b^2)/a^3/(-4*a*c+b^2)^2/e/(e*x+d)+1/4*(b^2-2* 
a*c+b*c*(e*x+d)^2)/a/(-4*a*c+b^2)/e/(e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2+ 
1/8*(5*b^4-35*a*b^2*c+36*a^2*c^2+b*c*(-32*a*c+5*b^2)*(e*x+d)^2)/a^2/(-4*a* 
c+b^2)^2/e/(e*x+d)/(a+b*(e*x+d)^2+c*(e*x+d)^4)-3/16*arctan((e*x+d)*2^(1/2) 
*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*((-12*a*c+5*b^2)*(-5*a*c+b^ 
2)+b*(124*a^2*c^2-47*a*b^2*c+5*b^4)/(-4*a*c+b^2)^(1/2))/a^3/(-4*a*c+b^2)^2 
/e*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-3/16*arctan((e*x+d)*2^(1/2)*c^(1/2 
)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*((-12*a*c+5*b^2)*(-5*a*c+b^2)+(-12 
4*a^2*b*c^2+47*a*b^3*c-5*b^5)/(-4*a*c+b^2)^(1/2))/a^3/(-4*a*c+b^2)^2/e*2^( 
1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.7.36.2 Mathematica [A] (verified)

Time = 6.18 (sec) , antiderivative size = 560, normalized size of antiderivative = 1.16 \[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=-\frac {1}{a^3 e (d+e x)}+\frac {b^3 (d+e x)-3 a b c (d+e x)+b^2 c (d+e x)^3-2 a c^2 (d+e x)^3}{4 a^2 \left (-b^2+4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {-7 b^5 (d+e x)+52 a b^3 c (d+e x)-84 a^2 b c^2 (d+e x)-7 b^4 c (d+e x)^3+47 a b^2 c^2 (d+e x)^3-52 a^2 c^3 (d+e x)^3}{8 a^3 \left (-b^2+4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {3 \sqrt {c} \left (5 b^5-47 a b^3 c+124 a^2 b c^2+5 b^4 \sqrt {b^2-4 a c}-37 a b^2 c \sqrt {b^2-4 a c}+60 a^2 c^2 \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^3 \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}} e}-\frac {3 \sqrt {c} \left (-5 b^5+47 a b^3 c-124 a^2 b c^2+5 b^4 \sqrt {b^2-4 a c}-37 a b^2 c \sqrt {b^2-4 a c}+60 a^2 c^2 \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^3 \left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}} e} \]

input
Integrate[1/((d + e*x)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3),x]
 
output
-(1/(a^3*e*(d + e*x))) + (b^3*(d + e*x) - 3*a*b*c*(d + e*x) + b^2*c*(d + e 
*x)^3 - 2*a*c^2*(d + e*x)^3)/(4*a^2*(-b^2 + 4*a*c)*e*(a + b*(d + e*x)^2 + 
c*(d + e*x)^4)^2) + (-7*b^5*(d + e*x) + 52*a*b^3*c*(d + e*x) - 84*a^2*b*c^ 
2*(d + e*x) - 7*b^4*c*(d + e*x)^3 + 47*a*b^2*c^2*(d + e*x)^3 - 52*a^2*c^3* 
(d + e*x)^3)/(8*a^3*(-b^2 + 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4) 
) - (3*Sqrt[c]*(5*b^5 - 47*a*b^3*c + 124*a^2*b*c^2 + 5*b^4*Sqrt[b^2 - 4*a* 
c] - 37*a*b^2*c*Sqrt[b^2 - 4*a*c] + 60*a^2*c^2*Sqrt[b^2 - 4*a*c])*ArcTan[( 
Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*a^3*(b 
^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) - (3*Sqrt[c]*(-5*b^5 + 47 
*a*b^3*c - 124*a^2*b*c^2 + 5*b^4*Sqrt[b^2 - 4*a*c] - 37*a*b^2*c*Sqrt[b^2 - 
 4*a*c] + 60*a^2*c^2*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x)) 
/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*a^3*(b^2 - 4*a*c)^(5/2)*Sqrt[b + 
 Sqrt[b^2 - 4*a*c]]*e)
 
3.7.36.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 471, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {1462, 1441, 25, 1600, 27, 1604, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx\)

\(\Big \downarrow \) 1462

\(\displaystyle \frac {\int \frac {1}{(d+e x)^2 \left (c (d+e x)^4+b (d+e x)^2+a\right )^3}d(d+e x)}{e}\)

\(\Big \downarrow \) 1441

\(\displaystyle \frac {\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac {\int -\frac {5 b^2+7 c (d+e x)^2 b-18 a c}{(d+e x)^2 \left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)}{4 a \left (b^2-4 a c\right )}}{e}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {5 b^2+7 c (d+e x)^2 b-18 a c}{(d+e x)^2 \left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)}{4 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 1600

\(\displaystyle \frac {\frac {\frac {36 a^2 c^2+b c \left (5 b^2-32 a c\right ) (d+e x)^2-35 a b^2 c+5 b^4}{2 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {\int -\frac {3 \left (b c \left (5 b^2-32 a c\right ) (d+e x)^2+\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )\right )}{(d+e x)^2 \left (c (d+e x)^4+b (d+e x)^2+a\right )}d(d+e x)}{2 a \left (b^2-4 a c\right )}}{4 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3 \int \frac {b c \left (5 b^2-32 a c\right ) (d+e x)^2+\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )}{(d+e x)^2 \left (c (d+e x)^4+b (d+e x)^2+a\right )}d(d+e x)}{2 a \left (b^2-4 a c\right )}+\frac {36 a^2 c^2+b c \left (5 b^2-32 a c\right ) (d+e x)^2-35 a b^2 c+5 b^4}{2 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 1604

\(\displaystyle \frac {\frac {\frac {3 \left (-\frac {\int \frac {c \left (5 b^2-12 a c\right ) \left (b^2-5 a c\right ) (d+e x)^2+b \left (5 b^4-42 a c b^2+92 a^2 c^2\right )}{c (d+e x)^4+b (d+e x)^2+a}d(d+e x)}{a}-\frac {\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )}{a (d+e x)}\right )}{2 a \left (b^2-4 a c\right )}+\frac {36 a^2 c^2+b c \left (5 b^2-32 a c\right ) (d+e x)^2-35 a b^2 c+5 b^4}{2 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {\frac {3 \left (-\frac {\frac {1}{2} c \left (\frac {b \left (124 a^2 c^2-47 a b^2 c+5 b^4\right )}{\sqrt {b^2-4 a c}}+\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d(d+e x)+\frac {1}{2} c \left (\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )-\frac {b \left (124 a^2 c^2-47 a b^2 c+5 b^4\right )}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d(d+e x)}{a}-\frac {\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )}{a (d+e x)}\right )}{2 a \left (b^2-4 a c\right )}+\frac {36 a^2 c^2+b c \left (5 b^2-32 a c\right ) (d+e x)^2-35 a b^2 c+5 b^4}{2 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {3 \left (-\frac {\frac {\sqrt {c} \left (\frac {b \left (124 a^2 c^2-47 a b^2 c+5 b^4\right )}{\sqrt {b^2-4 a c}}+\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )-\frac {b \left (124 a^2 c^2-47 a b^2 c+5 b^4\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {\sqrt {b^2-4 a c}+b}}}{a}-\frac {\left (5 b^2-12 a c\right ) \left (b^2-5 a c\right )}{a (d+e x)}\right )}{2 a \left (b^2-4 a c\right )}+\frac {36 a^2 c^2+b c \left (5 b^2-32 a c\right ) (d+e x)^2-35 a b^2 c+5 b^4}{2 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 a \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c (d+e x)^2}{4 a \left (b^2-4 a c\right ) (d+e x) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

input
Int[1/((d + e*x)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3),x]
 
output
((b^2 - 2*a*c + b*c*(d + e*x)^2)/(4*a*(b^2 - 4*a*c)*(d + e*x)*(a + b*(d + 
e*x)^2 + c*(d + e*x)^4)^2) + ((5*b^4 - 35*a*b^2*c + 36*a^2*c^2 + b*c*(5*b^ 
2 - 32*a*c)*(d + e*x)^2)/(2*a*(b^2 - 4*a*c)*(d + e*x)*(a + b*(d + e*x)^2 + 
 c*(d + e*x)^4)) + (3*(-(((5*b^2 - 12*a*c)*(b^2 - 5*a*c))/(a*(d + e*x))) - 
 ((Sqrt[c]*((5*b^2 - 12*a*c)*(b^2 - 5*a*c) + (b*(5*b^4 - 47*a*b^2*c + 124* 
a^2*c^2))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - S 
qrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*((5*b 
^2 - 12*a*c)*(b^2 - 5*a*c) - (b*(5*b^4 - 47*a*b^2*c + 124*a^2*c^2))/Sqrt[b 
^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c] 
]])/(Sqrt[2]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/a))/(2*a*(b^2 - 4*a*c)))/(4*a*( 
b^2 - 4*a*c)))/e
 

3.7.36.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1441
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-(d*x)^(m + 1))*(b^2 - 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 
1)/(2*a*d*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) 
  Int[(d*x)^m*(a + b*x^2 + c*x^4)^(p + 1)*Simp[b^2*(m + 2*p + 3) - 2*a*c*(m 
 + 4*p + 5) + b*c*(m + 4*p + 7)*x^2, x], x], x] /; FreeQ[{a, b, c, d, m}, x 
] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p] && (IntegerQ[p] || 
IntegerQ[m])
 

rule 1462
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Si 
mp[u^m/(Coefficient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p 
, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1600
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(a + b*x^2 + c*x^4)^(p + 1) 
*((d*(b^2 - 2*a*c) - a*b*e + (b*d - 2*a*e)*c*x^2)/(2*a*f*(p + 1)*(b^2 - 4*a 
*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(f*x)^m*(a + b*x^2 + c 
*x^4)^(p + 1)*Simp[d*(b^2*(m + 2*(p + 1) + 1) - 2*a*c*(m + 4*(p + 1) + 1)) 
- a*b*e*(m + 1) + c*(m + 2*(2*p + 3) + 1)*(b*d - 2*a*e)*x^2, x], x], x] /; 
FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Int 
egerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1604
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1) 
/(a*f*(m + 1))), x] + Simp[1/(a*f^2*(m + 1))   Int[(f*x)^(m + 2)*(a + b*x^2 
 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x 
], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[ 
m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 
3.7.36.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.90 (sec) , antiderivative size = 1197, normalized size of antiderivative = 2.47

method result size
default \(\text {Expression too large to display}\) \(1197\)
risch \(\text {Expression too large to display}\) \(2458\)

input
int(1/(e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x,method=_RETURNVERBOSE)
 
output
-1/a^3*((1/8*c^2*e^6*(52*a^2*c^2-47*a*b^2*c+7*b^4)/(16*a^2*c^2-8*a*b^2*c+b 
^4)*x^7+7/8*c^2*d*e^5*(52*a^2*c^2-47*a*b^2*c+7*b^4)/(16*a^2*c^2-8*a*b^2*c+ 
b^4)*x^6+1/8*(1092*a^2*c^3*d^2-987*a*b^2*c^2*d^2+147*b^4*c*d^2+136*a^2*b*c 
^2-99*a*b^3*c+14*b^5)*c*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5+5/8*c*d*e^3*(36 
4*a^2*c^3*d^2-329*a*b^2*c^2*d^2+49*b^4*c*d^2+136*a^2*b*c^2-99*a*b^3*c+14*b 
^5)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4+1/8*e^2*(1820*a^2*c^4*d^4-1645*a*b^2*c^ 
3*d^4+245*b^4*c^2*d^4+1360*a^2*b*c^3*d^2-990*a*b^3*c^2*d^2+140*b^5*c*d^2+6 
8*a^3*c^3+25*a^2*b^2*c^2-43*a*b^4*c+7*b^6)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3+ 
1/8*d*e*(1092*a^2*c^4*d^4-987*a*b^2*c^3*d^4+147*b^4*c^2*d^4+1360*a^2*b*c^3 
*d^2-990*a*b^3*c^2*d^2+140*b^5*c*d^2+204*a^3*c^3+75*a^2*b^2*c^2-129*a*b^4* 
c+21*b^6)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2+1/8*(364*a^2*c^4*d^6-329*a*b^2*c^ 
3*d^6+49*b^4*c^2*d^6+680*a^2*b*c^3*d^4-495*a*b^3*c^2*d^4+70*b^5*c*d^4+204* 
a^3*c^3*d^2+75*a^2*b^2*c^2*d^2-129*a*b^4*c*d^2+21*b^6*d^2+108*a^3*b*c^2-66 
*a^2*b^3*c+9*a*b^5)/(16*a^2*c^2-8*a*b^2*c+b^4)*x+1/8*d/e*(52*a^2*c^4*d^6-4 
7*a*b^2*c^3*d^6+7*b^4*c^2*d^6+136*a^2*b*c^3*d^4-99*a*b^3*c^2*d^4+14*b^5*c* 
d^4+68*a^3*c^3*d^2+25*a^2*b^2*c^2*d^2-43*a*b^4*c*d^2+7*b^6*d^2+108*a^3*b*c 
^2-66*a^2*b^3*c+9*a*b^5)/(16*a^2*c^2-8*a*b^2*c+b^4))/(c*e^4*x^4+4*c*d*e^3* 
x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2+3/16/ 
(16*a^2*c^2-8*a*b^2*c+b^4)/e*sum((c*e^2*(60*a^2*c^2-37*a*b^2*c+5*b^4)*_R^2 
+2*d*c*e*(60*a^2*c^2-37*a*b^2*c+5*b^4)*_R+60*a^2*c^3*d^2-37*a*b^2*c^2*d...
 
3.7.36.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 10260 vs. \(2 (438) = 876\).

Time = 1.11 (sec) , antiderivative size = 10260, normalized size of antiderivative = 21.20 \[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(1/(e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")
 
output
Too large to include
 
3.7.36.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Timed out} \]

input
integrate(1/(e*x+d)**2/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)
 
output
Timed out
 
3.7.36.7 Maxima [F]

\[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\int { \frac {1}{{\left ({\left (e x + d\right )}^{4} c + {\left (e x + d\right )}^{2} b + a\right )}^{3} {\left (e x + d\right )}^{2}} \,d x } \]

input
integrate(1/(e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")
 
output
-1/8*(3*(5*b^4*c^2 - 37*a*b^2*c^3 + 60*a^2*c^4)*e^8*x^8 + 24*(5*b^4*c^2 - 
37*a*b^2*c^3 + 60*a^2*c^4)*d*e^7*x^7 + (30*b^5*c - 227*a*b^3*c^2 + 392*a^2 
*b*c^3 + 84*(5*b^4*c^2 - 37*a*b^2*c^3 + 60*a^2*c^4)*d^2)*e^6*x^6 + 6*(28*( 
5*b^4*c^2 - 37*a*b^2*c^3 + 60*a^2*c^4)*d^3 + (30*b^5*c - 227*a*b^3*c^2 + 3 
92*a^2*b*c^3)*d)*e^5*x^5 + 3*(5*b^4*c^2 - 37*a*b^2*c^3 + 60*a^2*c^4)*d^8 + 
 (15*b^6 - 91*a*b^4*c + 25*a^2*b^2*c^2 + 324*a^3*c^3 + 210*(5*b^4*c^2 - 37 
*a*b^2*c^3 + 60*a^2*c^4)*d^4 + 15*(30*b^5*c - 227*a*b^3*c^2 + 392*a^2*b*c^ 
3)*d^2)*e^4*x^4 + (30*b^5*c - 227*a*b^3*c^2 + 392*a^2*b*c^3)*d^6 + 4*(42*( 
5*b^4*c^2 - 37*a*b^2*c^3 + 60*a^2*c^4)*d^5 + 5*(30*b^5*c - 227*a*b^3*c^2 + 
 392*a^2*b*c^3)*d^3 + (15*b^6 - 91*a*b^4*c + 25*a^2*b^2*c^2 + 324*a^3*c^3) 
*d)*e^3*x^3 + 8*a^2*b^4 - 64*a^3*b^2*c + 128*a^4*c^2 + (15*b^6 - 91*a*b^4* 
c + 25*a^2*b^2*c^2 + 324*a^3*c^3)*d^4 + (84*(5*b^4*c^2 - 37*a*b^2*c^3 + 60 
*a^2*c^4)*d^6 + 25*a*b^5 - 194*a^2*b^3*c + 364*a^3*b*c^2 + 15*(30*b^5*c - 
227*a*b^3*c^2 + 392*a^2*b*c^3)*d^4 + 6*(15*b^6 - 91*a*b^4*c + 25*a^2*b^2*c 
^2 + 324*a^3*c^3)*d^2)*e^2*x^2 + (25*a*b^5 - 194*a^2*b^3*c + 364*a^3*b*c^2 
)*d^2 + 2*(12*(5*b^4*c^2 - 37*a*b^2*c^3 + 60*a^2*c^4)*d^7 + 3*(30*b^5*c - 
227*a*b^3*c^2 + 392*a^2*b*c^3)*d^5 + 2*(15*b^6 - 91*a*b^4*c + 25*a^2*b^2*c 
^2 + 324*a^3*c^3)*d^3 + (25*a*b^5 - 194*a^2*b^3*c + 364*a^3*b*c^2)*d)*e*x) 
/((a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e^10*x^9 + 9*(a^3*b^4*c^2 - 8 
*a^4*b^2*c^3 + 16*a^5*c^4)*d*e^9*x^8 + 2*(a^3*b^5*c - 8*a^4*b^3*c^2 + 1...
 
3.7.36.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1458 vs. \(2 (438) = 876\).

Time = 0.40 (sec) , antiderivative size = 1458, normalized size of antiderivative = 3.01 \[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(1/(e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")
 
output
-1/8*(7*b^4*c^2/((e*x + d)*e) - 47*a*b^2*c^3/((e*x + d)*e) + 52*a^2*c^4/(( 
e*x + d)*e) + 14*b^5*c/((e*x + d)^3*e) - 99*a*b^3*c^2/((e*x + d)^3*e) + 13 
6*a^2*b*c^3/((e*x + d)^3*e) + 7*b^6/((e*x + d)^5*e) - 43*a*b^4*c/((e*x + d 
)^5*e) + 25*a^2*b^2*c^2/((e*x + d)^5*e) + 68*a^3*c^3/((e*x + d)^5*e) + 9*a 
*b^5/((e*x + d)^7*e) - 66*a^2*b^3*c/((e*x + d)^7*e) + 108*a^3*b*c^2/((e*x 
+ d)^7*e))/((a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*(c + b/(e*x + d)^2 + a/(e 
*x + d)^4)^2) + 3/64*((5*a^6*b^13 - 112*a^7*b^11*c + 1030*a^8*b^9*c^2 - 49 
28*a^9*b^7*c^3 + 12736*a^10*b^5*c^4 - 16384*a^11*b^3*c^5 + 7680*a^12*b*c^6 
)*sqrt(2*a*b + 2*sqrt(b^2 - 4*a*c)*a)*e^4 + 2*(5*a^4*b^6*c - 57*a^5*b^4*c^ 
2 + 208*a^6*b^2*c^3 - 240*a^7*c^4)*sqrt(2*a*b + 2*sqrt(b^2 - 4*a*c)*a)*sqr 
t(b^2 - 4*a*c)*e^2*abs(a^3*b^4*e^2 - 8*a^4*b^2*c*e^2 + 16*a^5*c^2*e^2) - ( 
a^3*b^4*e^2 - 8*a^4*b^2*c*e^2 + 16*a^5*c^2*e^2)^2*(5*b^5 - 42*a*b^3*c + 92 
*a^2*b*c^2)*sqrt(2*a*b + 2*sqrt(b^2 - 4*a*c)*a))*arctan(2*sqrt(1/2)/((e*x 
+ d)*e*sqrt((a^3*b^5*e^2 - 8*a^4*b^3*c*e^2 + 16*a^5*b*c^2*e^2 + sqrt((a^3* 
b^5*e^2 - 8*a^4*b^3*c*e^2 + 16*a^5*b*c^2*e^2)^2 - 4*(a^4*b^4*e^4 - 8*a^5*b 
^2*c*e^4 + 16*a^6*c^2*e^4)*(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))/(a^4 
*b^4*e^4 - 8*a^5*b^2*c*e^4 + 16*a^6*c^2*e^4))))/((a^7*b^6*c - 12*a^8*b^4*c 
^2 + 48*a^9*b^2*c^3 - 64*a^10*c^4)*sqrt(b^2 - 4*a*c)*e^3*abs(a^3*b^4*e^2 - 
 8*a^4*b^2*c*e^2 + 16*a^5*c^2*e^2)*abs(a)) - 3/64*((5*a^6*b^13 - 112*a^7*b 
^11*c + 1030*a^8*b^9*c^2 - 4928*a^9*b^7*c^3 + 12736*a^10*b^5*c^4 - 1638...
 
3.7.36.9 Mupad [B] (verification not implemented)

Time = 16.58 (sec) , antiderivative size = 18112, normalized size of antiderivative = 37.42 \[ \int \frac {1}{(d+e x)^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
int(1/((d + e*x)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3),x)
 
output
- ((x^4*(15*b^6*e^3 + 324*a^3*c^3*e^3 + 450*b^5*c*d^2*e^3 + 25*a^2*b^2*c^2 
*e^3 + 12600*a^2*c^4*d^4*e^3 + 1050*b^4*c^2*d^4*e^3 - 91*a*b^4*c*e^3 - 340 
5*a*b^3*c^2*d^2*e^3 + 5880*a^2*b*c^3*d^2*e^3 - 7770*a*b^2*c^3*d^4*e^3))/(8 
*a*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)) + (x^6*(30*b^5*c*e^5 - 227*a*b^3* 
c^2*e^5 + 392*a^2*b*c^3*e^5 + 5040*a^2*c^4*d^2*e^5 + 420*b^4*c^2*d^2*e^5 - 
 3108*a*b^2*c^3*d^2*e^5))/(8*a*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)) + (x* 
(30*b^6*d^3 + 90*b^5*c*d^5 + 648*a^3*c^3*d^3 + 720*a^2*c^4*d^7 + 60*b^4*c^ 
2*d^7 + 25*a*b^5*d - 681*a*b^3*c^2*d^5 + 1176*a^2*b*c^3*d^5 - 444*a*b^2*c^ 
3*d^7 + 50*a^2*b^2*c^2*d^3 - 194*a^2*b^3*c*d + 364*a^3*b*c^2*d - 182*a*b^4 
*c*d^3))/(4*a*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)) + (3*x^5*(1680*a^2*c^4 
*d^3*e^4 + 140*b^4*c^2*d^3*e^4 + 30*b^5*c*d*e^4 - 227*a*b^3*c^2*d*e^4 + 39 
2*a^2*b*c^3*d*e^4 - 1036*a*b^2*c^3*d^3*e^4))/(4*a*(a^2*b^4 + 16*a^4*c^2 - 
8*a^3*b^2*c)) + (3*x^8*(60*a^2*c^4*e^7 + 5*b^4*c^2*e^7 - 37*a*b^2*c^3*e^7) 
)/(8*a*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)) + (x^2*(90*b^6*d^2*e + 25*a*b 
^5*e + 1944*a^3*c^3*d^2*e + 5040*a^2*c^4*d^6*e + 420*b^4*c^2*d^6*e - 194*a 
^2*b^3*c*e + 364*a^3*b*c^2*e + 450*b^5*c*d^4*e - 546*a*b^4*c*d^2*e - 3405* 
a*b^3*c^2*d^4*e + 5880*a^2*b*c^3*d^4*e - 3108*a*b^2*c^3*d^6*e + 150*a^2*b^ 
2*c^2*d^2*e))/(8*a*(a^2*b^4 + 16*a^4*c^2 - 8*a^3*b^2*c)) + (x^3*(15*b^6*d* 
e^2 + 324*a^3*c^3*d*e^2 + 150*b^5*c*d^3*e^2 + 2520*a^2*c^4*d^5*e^2 + 210*b 
^4*c^2*d^5*e^2 - 91*a*b^4*c*d*e^2 + 25*a^2*b^2*c^2*d*e^2 - 1135*a*b^3*c...